A graphical preprocessor for Spectral Element Method (SEM) is developed with an
emphasis on user friendly graphical interface and instructive element construction. The
interface of the preprocessor helps users with every step during mesh generation, aiding
their understanding of SEM. This preprocessor's Graphical User Interface (GUI) and
help system are comparable to other commercial tools. Moreover, this preprocessor is
designed for educational purposes, and prior knowledge of Spectral Element formulation
is not required to use this tool. The information window in the preprocessor shows stepby-
step instructions for the user. The preprocessor provides a graphical interface which
enables visualization while the mesh is being constructed, so that the entire domain can
be discretized easily. In addition, by following informative steps during the mesh
construction, the user can gain knowledge about the intricate details of computational
fluid dynamics.
This preprocessor provides a convenient way to implement h/p type nonconforming
interfaces between elements. This aids the user in learning advanced numerical
discretization techniques, such as the h/p nonconforming SEM. Using the preprocessor facilitates enhanced understanding of SEM, isoparametric mapping, h and p type
nonconforming interfaces, and spectral convergence. For advanced users, this
preprocessor provides a proficient and convenient graphical interface independent of the
solvers. Any spectral element solver can utilize this preprocessor, by reading the format
of the output file from the preprocessor. Given these features, this preprocessor is useful
both for novice and advanced users.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-1819 |
Date | 02 June 2009 |
Creators | Kim, Bo Hung |
Contributors | Beskok, Ali |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Thesis, text |
Format | electronic, application/pdf, born digital |
Page generated in 0.0017 seconds