The aim of this thesis is to develop a flow solver that has the ability to obtain an accurate numerical solution fast and efficiently with minimum user intervention. In this study, a two-dimensional viscous, laminar, incompressible flow solver based on Least-Squares Spectral Element Method (LSSEM) is developed. The LSSEM flow solver can work on hp-type nonconforming grids and can perform p-type adaptive refinement. Several benchmark problems are solved in order to validate the solver and successful results are obtained. In particular, it is demonstrated that p-type adaptive refinement on hp-type non-conforming grids can be used to improve the quality of the solution. Moreover, it is found that mass conservation performance of LSSEM can be enhanced by using p-type adaptive refinement strategies while keeping computational costs reasonable.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/3/12612096/index.pdf |
Date | 01 June 2010 |
Creators | Ozcelikkale, Altug |
Contributors | Sert, Cuneyt |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0179 seconds