Return to search

Reservoir-computing-based, biologically inspired artificial neural networks and their applications in power systems

Computational intelligence techniques, such as artificial neural networks (ANNs), have been widely used to improve the performance of power system monitoring and control. Although inspired by the neurons in the brain, ANNs are largely different from living neuron networks (LNNs) in many aspects. Due to the oversimplification, the huge computational potential of LNNs cannot be realized by ANNs. Therefore, a more brain-like artificial neural network is highly desired to bridge the gap between ANNs and LNNs.
The focus of this research is to develop a biologically inspired artificial neural network (BIANN), which is not only biologically meaningful, but also computationally powerful. The BIANN can serve as a novel computational intelligence tool in monitoring, modeling and control of the power systems.
A comprehensive survey of ANNs applications in power system is presented. It is shown that novel types of reservoir-computing-based ANNs, such as echo state networks (ESNs) and liquid state machines (LSMs), have stronger modeling capability than conventional ANNs. The feasibility of using ESNs as modeling and control tools is further investigated in two specific power system applications, namely, power system nonlinear load modeling for true load harmonic prediction and the closed-loop control of active filters for power quality assessment and enhancement. It is shown that in both applications, ESNs are capable of providing satisfactory performances with low computational requirements.
A novel, more brain-like artificial neural network, i.e. biologically inspired artificial neural network (BIANN), is proposed in this dissertation to bridge the gap between ANNs and LNNs and provide a novel tool for monitoring and control in power systems. A comprehensive survey of the spiking models of living neurons as well as the coding approaches is presented to review the state-of-the-art in BIANN research. The proposed BIANNs are based on spiking models of living neurons with adoption of reservoir-computing approaches. It is shown that the proposed BIANNs have strong modeling capability and low computational requirements, which makes it a perfect candidate for online monitoring and control applications in power systems.
BIANN-based modeling and control techniques are also proposed for power system applications. The proposed modeling and control schemes are validated for the modeling and control of a generator in a single-machine infinite-bus system under various operating conditions and disturbances. It is shown that the proposed BIANN-based technique can provide better control of the power system to enhance its reliability and tolerance to disturbances.
To sum up, a novel, more brain-like artificial neural network, i.e. biologically inspired artificial neural network (BIANN), is proposed in this dissertation to bridge the gap between ANNs and LNNs and provide a novel tool for monitoring and control in power systems. It is clearly shown that the proposed BIANN-based modeling and control schemes can provide faster and more accurate control for power system applications.
The conclusions, the recommendations for future research, as well as the major contributions of this research are presented at the end.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/47646
Date05 April 2013
CreatorsDai, Jing
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0017 seconds