Ce travail de thèse est une contribution à l'étude de la dynamique de spin des porteurs dans des structures semiconductrices III-V en vue d’applications possibles dans le domaine émergent de la spintronique dans les semiconducteurs. Deux approches différentes on été envisagées afin de pouvoir obtenir une polarisation en spin des porteurs longue et robuste : i) le confinement spatial dans des nano-structures 0D (boîtes quantiques), ii) l’ingénierie des centres paramagnétiques dans des couches massives.Pour la première approche, nous avons étudié les propriétés de polarisation de spin d’excitons confinés dans des boîtes quantiques de GaN/AlN insérées dans des nano-fils. Nous avons d’abord mis en évidence un taux important de polarisation de la photoluminescence (15 %) à basse température sous excitation quasi-résonante et nous avons démontré que cette polarisation est temporellement constante pendant la durée de vie des excitons. Grâce à des mesures en température, nous avons aussi démontré que cette polarisation n’est aucunement affectée jusqu’à 300 K. Nous avons aussi développé un modèle détaillé basé sur la matrice densité pour décrire le dégré de polarisation de la photoluminescence et sa dépendance angulaire.Pour la deuxième approche, nous avons réalisé un dispositif prototype de filtrage de spin basé sur l’implantation de centres paramagnétiques dans des couches massives de InGaAs. Le principe repose sur la création de défauts interstitiels paramagnétiques comme précédemment démontré dans notre groupe pour les nitrures dilués tels que GaAsN. Le but de ce travail a été le développement d’un procédé de création de ces défauts qui puisse surmonter les inconvénients liés à l’insertion de l’azote dans les semiconducteurs de type GaAs : a) la dépendance de l’efficacité du filtrage de spin avec de l’énergie de photoluminescence, b) l’impossibilité de créer des zones actives avec des motifs spécifiques.Dans ce travail, nous démontrons que des régions actives de filtre à spin peuvent être créées par implantation ionique de défauts paramagnétiques avec une densité et des motifs spatiaux prédéfinis. Grâce à des études par photoluminescence, nous avons d’une part mis en évidence des taux de recombinaison dépendant en spin pouvant aller jusqu’à 240 % dans les zones implantées. D’autre part, nous avons déterminé la dose d’implantation la plus favorable grâce à une étude systématique sur différents échantillons implantés avec des densités ioniques étendues sur quatre ordres de grandeurs. Nous avons également observé que l’application d’un champ magnétique externe produit une augmentation significative du taux de recombinaison dépendant en spin due à la polarisation en spin des noyaux implantés / This thesis work is a contribution to the investigation by photoluminescence spectroscopy of the spin properties of III-V semiconductors with possible applications to the emerging semiconductor spintronics field. Two approaches have been explored in this work to achieve a long and robust spin polarization: i) Spatial confinement of the carriers in 0D nanostructured systems (quantum dots). ii) Defect engineering of paramagnetic centres in a bulk systems. Concerning the first approach, we have investigated the polarization properties of excitons in nanowire-embedded GaN/AlN quantum dots. We first evidence a low temperature sizeable linear polarization degree of the photoluminescence (~15 %) under quasi-resonant excitation with no temporal decay during the exciton lifetime. Moreover, we demonstrate that this stable exciton spin polarization is unaffected by the temperature up to 300 K. A detailed theoretical model based on the density matrix approach has also been developed to account for the observed polarization degree and its angular dependence.Regarding the second approach, we have demonstrated a proof-of-concept of conduction band spin-filtering device based on the implantation of paramagnetic centres in InGaAs epilayers. The principle relies on the creation of Ga interstitial defects as previously demonstrated in our group in dilute nitride GaAsN compounds. The driving force behind this work has been to overcome the limitations inherent to the introduction of N in the compounds: a) The dependence of the photoluminescence energy on the spin-filtering efficiency. b) The lack of spatial patterning of the active regions.In this work we show how the spin-filtering defects can be created by ion implantation creating a chosen density and spatial distribution of gallium paramagnetic centers in N-free epilayers. We demonstrate by photoluminescence spectroscopy that spin-dependent recombination (SDR) ratios as high as 240 % can be achieved in the implanted areas. The optimum implantation conditions for the most efficient SDR are also determined by the systematic analysis of different ion doses spanning four orders of magnitude. We finally show how the application of a weak external magnetic field leads to a sizable enhancement of the SDR ratio from the spin polarization of the implanted nuclei
Identifer | oai:union.ndltd.org:theses.fr/2014ISAT0006 |
Date | 11 April 2014 |
Creators | Nguyen, Cong Tu |
Contributors | Toulouse, INSA, Amand, Thierry, Balocchi, Andréa |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds