Return to search

Dirac operators on Lagrangian submanifolds

We study a natural Dirac operator on a Lagrangian submanifold of a Kähler manifold. We first show that its square coincides with the Hodge - de Rham Laplacian provided the complex structure identifies the Spin structures of the tangent and normal bundles of the submanifold. We then give extrinsic estimates
for the eigenvalues of that operator and discuss some examples.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:562
Date January 2004
CreatorsGinoux, Nicolas
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik
Source SetsPotsdam University
LanguageEnglish
Detected LanguageEnglish
TypePostprint
Formatapplication/pdf
SourceJournal of geometry and physics. - 52 (2004), 4, S. 480 - 498
Rightshttp://opus.kobv.de/ubp/doku/urheberrecht.php

Page generated in 0.0016 seconds