Return to search

Formulation of Model Problem for Chirality Induced Spin Selectivity Effect

Spin dependent electron transport in chiral molecules, the so-called chirality induced spin selectivity (CISS) effect, have attracted much attention over the past few years. Experimentally the spin polarization has been detected, and there is a theoretical consensus on the necessity of both spin-orbit coupling and geometrical helicity in order to get a non-vanishing spin polarization. Several model Hamiltonians has been proposed to describe the CISSS effect, and while they can yield spin polarization agreeing with the experimentally observed magnitudes, they are relying on unrealistic values of the spin orbit interaction parameters. In recent years the importance of electron correlation has been emphasized. Thus, this thesis presents the general theory on how to treat the CISS effect as a many body problem, taking electron correlation into account. The Hamiltonian modelling is described and one approach on how to treat the helical structure of the molecule and the spin-orbit coupling is presented. Building on this thesis, further studies will hopefully lead to a first principle understanding of the CISS effect.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-414026
Date January 2020
CreatorsBruce, Henrik
PublisherUppsala universitet, Materialteori
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationMATVET-F ; 20012

Page generated in 0.0018 seconds