Clinically, injuries affecting the spinal cord or peripheral nerves can leave those affected with severe disability and, at present, there are limited options for treatment. Peripheral nerve injury with a significant gap between the proximal and distal stumps is currently treated with autologous nerve grafting but this is limited by availability of donor nerve and has associated morbidities. In contrast, injuries to the spinal cord lead to an inhibitory environment caused by the glial cells and thereby, limit potential axonal regeneration. This thesis investigates the effects of human adipose derived stem cells (ASC) on regeneration after peripheral nerve and spinal cord injury in adult rats. Human ASC expressed various neurotrophic molecules and growth factor stimulation of the cells in vitro resulted in increased secretion of BDNF, GDNF, VEGF-A and angiopoietin-1 proteins. Stimulated ASC also showed an enhanced ability to induce capillary-like tube formation in an in vitro angiogenesis assay. In contrast to Schwann cells, ASC did not induce activation of astrocytes and supported neurite outgrowth from the adult rat sensory DRG neurons in culture. In a peripheral nerve injury model, ASC were seeded into a fibrin conduit, which was used to bridge a 10 mm rat sciatic nerve gap. After 2 weeks, ASC enhanced GAP-43 and ATF-3 expression in the spinal cord, reduced c-jun expression in the DRG and increased the vascularity of the fibrin nerve conduits. The animals treated with stimulated ASC showed an enhanced axon regeneration and reduced caspase-3 expression in the DRG. After transplantation into the injured C3-C4 cervical spinal cord. ASC continued to express neurotrophic factors and laminin and stimulated extensive ingrowths of 5HT-positive raphaespinal axons into the trauma zone. In addition, ASC induced sprouting of raphaespinal terminals in C2 contralateral ventral horn and C6 ventral horn on both sides. Transplanted cells also changed the structure and the density of the astroglial scar. Although the transplanted cells had no effect on the density of capillaries around the lesion site, the reactivity of OX42-positive microglial cells was markedly reduced.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-89445 |
Date | January 2014 |
Creators | Kolar, Mallappa K |
Publisher | Umeå universitet, Anatomi, Umeå universitet, Handkirurgi, Umeå : Umeå universitet |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds