Return to search

Curved spiral antennas for underwater biological applications

We developed curved spiral antennas for use in underwater (freshwater) communications. Specifically, these antennas will be integrated in so-called mussel backpacks. Backpacks are compact electronics that incorporate sensors and a small radio that operate around 300 MHz. Researchers attach these backpacks in their freshwater mussel related research. The antennas must be small, lightweight, and form-fit the mussel. Additionally, since the mussel orientation is unknown, the antennas must have broad radiation patterns. Further, the electromagnetic environment changes significantly as the mussels burrow into the river bottom. Broadband antennas, such a spiral antennas, will perform better in this instance. While spiral antennas are well established, there has been little work on their performance in freshwater. Additionally, there has been some work on curved spiral antennas, but this work focused on curving in one dimension, namely curving around a cylinder. In this thesis we develop spiral antennas that curve in two dimensions in order to conform the contour of a mussel's shell.
Our research has three components, namely (a) an investigation of the relevant theoretical underpinning of spiral antennas, (b) extensive computer simulations using state-of-the art computational electromagnetics (CEM) simulation software, and (c) experimental validation. The experimental validation was performed in a large tank in a laboratory setting. We also validated some designs in a pool (∼300,000 liters of water and ∼410 squared-meter dive pool) with the aid of a certified diver.
To use CEM software and perform successful antenna-related experiments require careful attention to many details. The mathematical description of radiation from an antenna, antenna input impedance and so on, is inherently complex. Engineers often make simplifying assumptions such as assuming no reflections, or an isotropic propagation environment, or operation in the antenna far field, and so on. This makes experiments on antennas challenging since it often quite difficult to replicate the simplifying assumptions in an experimental setting.
Still, with careful consideration of the important factors and careful experimental design it is possible to perform successful experiments. For example, antenna measurements are often performed in anechoic chambers. For our research we used a large swimming pool to mimic an underwater anechoic chamber. Our CEM simulations and experimental results are in most cases congruent. We are confident that we can design formfitting, compact (spiral) antennas that one could deploy on mussels. This will greatly enhance the mussel backpacks that are used by researchers at the University of Iowa.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-5933
Date01 July 2015
CreatorsLlamas, Ruben A.
ContributorsKruger, Anton
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typedissertation
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright 2015 Ruben A. Llamas

Page generated in 0.0148 seconds