Return to search

Development of a mathematical model for apple juice compounds rejection in a spiral-wound reverse osmosis process

Yes / The use of Reverse Osmosis (RO) membrane processes for the clarification and the concentration of apple juice is proposed as an alternative to the conventional concentration technique, which is based on evaporation and freezing. Several models have been published on RO process models relying on different assumptions that predict the permeate flux and aroma compounds rejections for aqueous solutions apple juice. The solution-diffusion model (Lumped model) has been applied for the previous models. The main instrument of this study is the use of the gPROMS software to develop a new distributed steady state model that will relax a number of earlier assumptions.
The model has been validated with an observational data of apple juice filtration derived from the literature by analysing the permeate flux and the performance of membrane rejection at different concentrations, temperatures and pressures for a laboratory scale of spiral-wound RO module. Simulated results corroborate with experimental and model predictions.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/8864
Date11 August 2016
CreatorsAl-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeArticle, Accepted manuscript
Rights© 2017 Elsevier. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0015 seconds