Adaptation to chronic hypoxia provides cardioprotective effects. Molecular mechanism of this phenomenon is not yet completely understood, but it is known that cardiac mitochondria play an essential role in induction of protective effects. The purpose of this diploma thesis is to study effects of continuous normobaric hypoxia (CNH; 10 % O2, 21 days) on spontaneously hypertensive rats (SHR) and conplastic strain that is derived from SHR. These animals have nuclear genome of SHR strain and mitochondrial genome of Brown Norway (BN) strain. Cardiac homogenate was used to measure enzymatic activity of malate dehydrogenase (MDH), citrate synthase (CS), NADH-cytochrome c oxidoreductase, succinate-cytochrome c oxidoreductase and cytochrome oxidase (COX). Using Western blot procedure the protein amount of antioxidant enzymes was measured - manganese superoxide dismutase and copper-zinc superoxide dismutase (MnSOD, Cu/ZnSOD), catalase and chosen subunits of oxidative phosphorylation complexes (Ndufa9, Sdha, Uqcrc2, COX-4, MTCO1, Atp5a1). Under normoxic conditions the conplastic strain has lower amount of complex IV subunit MTCO1 in comparison with SHR. This subunit is encoded by mitochondrial DNA and it is one of the seven protein-coding genes in conplastic strain that differ from SHR. Adaptation to hypoxia causes an...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:322721 |
Date | January 2013 |
Creators | Weissová, Romana |
Contributors | Kalous, Martin, Rauchová, Hana |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0016 seconds