<p>Text clustering divides a set of texts into groups, so that texts within each group are similar in content. It may be used to uncover the structure and content of unknown text sets as well as to give new perspectives on known ones. The contributions of this thesis are an investigation of text representation for Swedish and an evaluation method that uses two or more manual categorizations.</p><p>Text clustering, at least such as it is treated here, is performed using the vector space model, which is commonly used in information retrieval. This model represents texts by the words that appear in them and considers texts similar in content if they share many words. Languages differ in what is considered a word. We have investigated the impact of some of the characteristics of Swedish on text clustering. Since Swedish has more morphological variation than for instance English we have used a stemmer to strip suffixes. This gives moderate improvements and reduces the number of words in the representation.</p><p>Swedish has a rich production of solid compounds. Most of the constituents of these are used on their own as words and in several different compounds. In fact, Swedish solid compounds often correspond to phrases or open compounds in other languages.In the ordinary vector space model the constituents of compounds are not accounted for when calculating the similarity between texts. To use them we have employed a spell checking program to split compounds. The results clearly show that this is beneficial.</p><p>The vector space model does not regard word order. We have tried to extend it with nominal phrases in different ways. Noneof our experiments have shown any improvement over using the ordinary model.</p><p>Evaluation of text clustering results is very hard. What is a good partition of a text set is inherently subjective. Automatic evaluation methods are either intrinsic or extrinsic. Internal quality measures use the representation in some manner. Therefore they are not suitable for comparisons of different representations.</p><p>External quality measures compare a clustering with a (manual) categorization of the same text set. The theoretical best possible value for a measure is known, but it is not obvious what a good value is -- text sets differ in difficulty to cluster and categorizations are more or less adapted to a particular text set. We describe an evaluation method for cases where a text set has more than one categorization. In such cases the result of a clustering can be compared with the result for one of the categorizations, which we assume is a good partition. We also describe the kappa coefficient as a clustering quality measure in the same setting.</p> / <p>Textklustring delar upp en mängd texter i grupper, så att texterna inom dessa liknar varandra till innehåll. Man kan använda textklustring för att uppdaga strukturer och innehåll i okända textmängder och för att få nya perspektiv på redan kända. Bidragen i denna avhandling är en undersökning av textrepresentationer för svenska texter och en utvärderingsmetod som använder sig av två eller fler manuella kategoriseringar.</p><p>Textklustring, åtminstonde som det beskrivs här, utnyttjar sig av den vektorrumsmodell, som används allmänt inom området. I denna modell representeras texter med orden som förekommer i dem och texter som har många gemensamma ord betraktas som lika till innehåll. Vad som betraktas som ett ord skiljer sig mellan språk. Vi har undersökt inverkan av några av svenskans egenskaper på textklustring. Eftersom svenska har större morfologisk variation än till exempel engelska har vi tagit bort suffix med hjälp av en stemmer. Detta ger lite bättre resultat och minskar antalet ord i representationen.</p><p>I svenska används och skapas hela tiden fasta sammansättningar. De flesta delar av sammansättningar används som ord på egen hand och i många olika sammansättningar. Fasta sammansättningar i svenska språket motsvarar ofta fraser och öppna sammansättningar i andra språk. Delarna i sammansättningar används inte vid likhetsberäkningen i vektorrumsmodellen. För att utnyttja dem har vi använt ett rättstavningsprogram för att dela upp sammansättningar. Resultaten visar tydligt att detta är fördelaktigt</p><p>I vektorrumsmodellen tas ingen hänsyn till ordens inbördes ordning. Vi har försökt utvidga modellen med nominalfraser på olika sätt. Inga av våra experiment visar på någon förbättring jämfört med den vanliga enkla modellen.</p><p>Det är mycket svårt att utvärdera textklustringsresultat. Det ligger i sakens natur att vad som är en bra uppdelning av en mängd texter är subjektivt. Automatiska utvärderingsmetoder är antingen interna eller externa. Interna kvalitetsmått utnyttjar representationen på något sätt. Därför är de inte lämpliga att använda vid jämförelser av olika representationer.</p><p>Externa kvalitetsmått jämför en klustring med en (manuell) kategorisering av samma mängd texter. Det teoretiska bästa värdet för måtten är kända, men vad som är ett bra värde är inte uppenbart -- mängder av texter skiljer sig åt i svårighet att klustra och kategoriseringar är mer eller mindre lämpliga för en speciell mängd texter. Vi beskriver en utvärderingsmetod som kan användas då en mängd texter har mer än en kategorisering. I sådana fall kan resultatet för en klustring jämföras med resultatet för en av kategoriseringarna, som vi antar är en bra uppdelning. Vi beskriver också kappakoefficienten som ett kvalitetsmått för klustring under samma förutsättningar.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-438 |
Date | January 2005 |
Creators | Rosell, Magnus |
Publisher | KTH, Numerical Analysis and Computer Science, NADA |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Licentiate thesis, comprehensive summary, text |
Relation | Trita-NA, 0348-2952 ; 05-31 |
Page generated in 0.0079 seconds