In this study, I constructed a named-entity linking system that maps between contextual word embeddings and knowledge graph embeddings to predict correct entities. To establish a named-entity linking system, I first applied named-entity recognition to identify the entities of interest. I then performed candidate generation via locality sensitivity hashing (LSH), where a candidate group of potential entities were created for each identified entity. Afterwards, my named-entity disambiguation component was performed to select the most probable candidate. By concatenating contextual word embeddings and knowledge graph embeddings in my disambiguation component, I present a novel approach to named-entity linking. I conducted the experiments with the Kensho-Derived Wikimedia Dataset and the AIDA CoNLL-YAGO Dataset; the former dataset was used for deployment and the later is a benchmark dataset for entity linking tasks. Three deep learning models were evaluated on the named-entity disambiguation component with different context embeddings. The evaluation was treated as a classification task, where I trained my models to select the correct entity from a list of candidates. By optimizing the named-entity linking through this methodology, this entire system can be used in recommendation engines with high F1 of 86% using the former dataset. With the benchmark dataset, the proposed method is able to achieve F1 of 79%.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-412556 |
Date | January 2020 |
Creators | Perkins, Drew |
Publisher | Uppsala universitet, Institutionen för lingvistik och filologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds