In this thesis, we investigate dependency parsing for commercial application, namely for future integration in a dialogue system. To do this, we conduct several experiments on dialogue data to assess parser performance on this domain, and to improve this performance over a baseline. This work makes the following contributions: first, the creation and manual annotation of a gold-standard data set for dialogue data; second, a thorough error analysis of the data set, comparing neural network parsing to traditional parsing methods on this domain; and finally, various domain adaptation experiments show how parsing on this data set can be improved over a baseline. We further show that dialogue data is characterized by questions in particular, and suggest a method for improving overall parsing on these constructions.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-324859 |
Date | January 2017 |
Creators | Adams, Allison |
Publisher | Uppsala universitet, Institutionen för lingvistik och filologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds