Return to search

Flow Field Measurements in a Counter-Swirl Stabilized Liquid Combustor

To adhere to the current requirements for NOx and CO emissions in combustion systems, modern land and air based gas turbine engines often operate in the fuel lean regime. While operating near the lean blow out (LBO) limit does reduce some harmful emissions, combustor stability is sacrificed and extinction becomes a major concern. To fully understand the characteristics of lean operation, an experimental study was conducted to map the time averaged flow field in a typical industrial, counter-swirling, liquid fuel combustor. This study examined two steady-state operating conditions, both near the lean extinction limit for this swirl burner. Using an LDV/PDPA system, 2-D mean and fluctuating velocities, as well as Reynolds stresses, were measured throughout the combustor. These measurements were taken for both the non-reacting and reacting flow fields, enabling a direct analysis of the result of heat addition and increased load on a turbulent swirling flow field. To further understand the overall flow field, liquid droplet diameter measurements were taken to determine the fuel spray characteristics as a function of operating pressure and rated spray angle. Chemical composition at the combustor exit was also measured, with an emphasis on the concentrations of both CO and NOx emissions. This large database of aerodynamic and droplet measurements improves understanding of the swirling, reacting flow field and aids in the accurate prediction of lean blow-out events. With this understanding of the lean blow-out limit, increased fuel efficiency and decreased pollutant emissions can be achieved in industrial combustors, especially those used for thrust in the airline industry.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/10470
Date27 March 2006
CreatorsColby, Jonathan A.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeThesis
Format1195952 bytes, application/pdf

Page generated in 0.0017 seconds