This study proposes a navel method for continuously particle sorting utilizing cascade squeeze jumping effect under microfluidic configuration. Microparticles with different sizes can be successfully separated at different stages of squeezing sheath flow. The method is based on that particles can not flow stably within a flow stream with the smaller stream width than their sizes. Big particles will jump from their original flow stream into the wider neighboring sheath flow. In this study, we have successfully designed and fabricated two kinds of particles/cells sorters using MEMS (Micro-electro-mechanical Systems) technology. The proposed microchip device includes a multi-stage sheath flow particles/cells sorter and an improved design of a cascade squeezed flow scheme. In the study, theoretical formulations, computer simulations and experimental operations are used to analyze the flow field in the microchip and evaluate the sorting performance of the devices. Results show the good sorting performance with cell recovery rate of 87.7% and yield rate of 94.1% can be obtained using the proposed micro particles/cells sorter.
Furthermore, it is also important to continiously prepare reagents for in-column bio-chemical reactions. Therefore, this study presents a sheath-flow based microfluidic device for concentration fraction delivery of liquid samples. The simple and novel structure proposed in this study is able to prepare reagent with different concentration and is also easy to be integrated with other multifunctional microfluidic device. In order to demonstrate the feasibility and performance of the proposed concentration fraction delivery device, this study designs an integrated microchip device for in-line preparation of lysin reagent for cell lysis and an integrated T-form microfluidic mixer for demonstration of RBC lysis in the same microchip. Reagents for cell lysis are firstly prepared by the concentration faction delivery part of the chip. The prepared reagent is mixed with RBC sample downstream in the reaction channel using the T-form mixer. Results show a high RBC lysing rate of upto 100% in 10 mm downstream the T-junction can be achieved utilizing the proposed chip.
In this study, we have successfully demonstrated three kinds of microfluidic device including a micro particles/cells sorter, a concentration fraction delivery device and a cell lysis reactor. Numerical analysis and experimental investigation confirm the proposed concepts and performance of the microfluidic devices. The contributions of the study are highly potential for developing a low-cost bioreactor system in the
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0802106-115625 |
Date | 02 August 2006 |
Creators | Lee, Chen-Yan |
Contributors | Lung-Ming Fu, Chia-Yen Lee, Angela Chen, Che-Hsin Lin |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0802106-115625 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.0017 seconds