Return to search

Mechanisms and Signal Transduction Pathways Involved in Bovine Oocyte Activation

In addition to contributing genes at fertilization, the sperm cell induces the oocyte to leave its arrested state and resume metabolism in the process of activation. A hallmark of oocyte activation is a release of intracellular calcium (Ca2+i) from the endoplasmic reticulum. The mediators of oocyte activation have been studied in many animal models, while little is known in the bovine model. Both Src Family Kinase (SFK) and Phospholipase C (PLC) enzymes have been reported to be involved in oocyte activation in other animal models. In this dissertation are described experiments that define the role of SFK and PLC enzymes in the pathway leading to Ca2+i and calcium induced calcium release in bovine oocyte activation. Western blotting was used to discover that SFKs Src, Hck, and Lck are present in matured bovine oocytes, and Src, Blk, and Yes are present in acrosome reacted bovine spermatozoa. The PLC δ1 and δ3 are present in both matured bovine oocytes and spermatozoa. PLC δ4, γ2, and η2 are present in matured bovine oocytes. Microinjecting a known general SFK inhibitor, PP2, significantly decreases both Ca2+i and cleavage rates. Microinjecting a 13 amino acid peptide that mimics the phosphorylated carboxyl terminal region of pp60c-src decreases both Ca2+i and cleavage rates. Microinjecting a downstream substrate of pp60c-src sequestered any signal produced by Src and decreased Ca2+i and cleavage rates. Microinjecting primary antibodies raised against PLC isotypes blocked both Ca2+i and cleavage rates, giving insight to the mechanism of calcium induced calcium release in the bovine model. The PLC isotypes δ3, δ4, and γ2 decreased Ca2+i oscillations and cleavage rates, indicating they are involved in both IP3R and RyR activation. PLC δ4 and η2 did not impact Ca2+i but did significantly decrease cleavage rates. The data presented in this dissertation increase the understanding of the pathway leading to bovine oocyte activation and further confirm that the detailed pathway differs among animal models.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-2379
Date01 December 2012
CreatorsBayles, Ammon Hanson
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0023 seconds