Return to search

On the Polyhedral Lift-and-Project Rank Conjecture for the Fractional Stable Set Polytope

In this thesis, we study the behaviour of Lovasz and Schrijver's lift-and-project operators N and N_0 while being applied recursively to the fractional stable set polytope of a graph. We focus on two related conjectures proposed by Liptak and Tuncel: the N-N_0 Conjecture and Rank Conjecture. First, we look at the algebraic derivation of new valid inequalities by the operators N and N_0. We then present algebraic characterizations of these valid inequalities. Tightly based on our algebraic characterizations, we give an alternate proof of a result of Lovasz and Schrijver, establishing the equivalence of N and N_0 operators on the fractional stable set polytope. Since the above mentioned conjectures involve also the recursive applications of N and N_0 operators, we also study the valid inequalities obtained by these lift-and-project operators after two applications. We show that the N-N_0 Conjecture is false, while the Rank Conjecture is true for all graphs with no more than 8 nodes.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OWTU.10012/3485
Date January 2008
CreatorsAu, Yu Hin Jay
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation

Page generated in 0.0021 seconds