Return to search

Large eddy simulation of premixed and non-premixed combustion in a stagnation point reverse flow combustor

A new combustor, referred to as Stagnation Point Reverse Flow (SPRF) combustor has been developed at Georgia Tech to meet increasingly stringent emission regulations. The combustor incorporates a novel design to meet the conflicting requirements of low pollution and high efficiency in both premixed and non-premixed modes. The objective of this thesis is to perform Large Eddy Simulations (LES) on this lab-scale combustor and explain the underlying physics. To achieve this, numerical simulations are performed in both the premixed and non-premixed combustion modes. The velocity field, species field, entrainment characteristics, flame structure, emissions and mixing characteristics are then analyzed.

Simulations have been carried out first for a non-reactive case and the flow features in the combustor are analyzed. Next, the simulations have been extended for the premixed reactive case by employing different sub-grid scale combustion chemistry closures - Eddy Break Up (EBU), Artificially Thickened Flame (TF) and Linear Eddy Mixing (LEM) models. Only LEMLES which is an advanced scalar approach is able to accurately predict both the velocity and species field in the combustor.

The results from LEM with LES (LEMLES) using a reduced chemical mechanism have been analyzed in the premixed mode. The results showed that mass entrainment occurs along the shear layer in the combustor. The entrained mass carried products into the reactant stream and provided preheating. The product entrainment enhances the reaction rates and stabilizes the flame even at very lean conditions. These products are shown to enter into the flame through local extinction zones present on the flame surface. The flame structure is further analyzed and the combustion mode is found to be primarily in thin reaction zones. The emissions in the combustor are studied using simple global mechanisms for NOx. Computations show extremely low NOx values comparable to the measured emissions. These low emissions are shown to be primarily due to the low temperatures in the combustor. LEMLES computations are also performed with detailed chemistry to capture more accurately the flame structure. The flame in the detailed chemistry case is more sensitive to strain effects and show more extinction zones very near to the injector.

LEMLES approach is also used to resolve the combustion mode in the non-premixed case. The studies indicate that mixing of fuel and air close to the injector controls the combustion process. The predictions in the near field are shown to be very sensitive to the inflow conditions. Analysis shows that fuel and air mixing occurs to lean proportions in the combustor before any burning takes place. The flame structure in the non-premixed mode is very similar to the premixed mode. Along with fuel-air mixing, the products also mix with the reactants and provide the preheating effects to stabilize the flame in the downstream region of the combustor.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/22625
Date10 March 2008
CreatorsUndapalli, Satish
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0019 seconds