The contamination of 316L stainless steel surfaces within an electrospray ionisation source of a mass spectrometer is investigated. An accelerated method of contamination is used. Following initial test method development and investigation of the contamination resulting on the ion transfer components (sample cone, outer cone and extraction cone), flat samples are employed within the ionisation source. This enables characterisation of the contamination composition, morphology and build-up with time. Blood plasma is introduced into the mass spectrometer as it is a widely analysed substance that is known to result in contamination. The contamination from a mixture of human blood plasma, diluted in methanol, and a water/acetonitrile mobile phase is found to contain inorganic NaCl crystals embedded in a matrix of organic residues. The morphology shows self-organising features as the contamination builds. A model is proposed to explain the morphology, involving rapid evaporation of the droplets that impinge on the stainless steel surface. Two types of surface modification are considered for the stainless steel: electrochemically grown films and coatings deposited by vapour deposition. A method for electrochemical film growth is developed, enabling nanoporous films to be formed on the stainless steel in 5 M sulphuric acid at 60°C by square wave pulse polarisation between active or transpassive and passive potentials. The films are characterised using glow discharge optical emission spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, Rutherford backscattering spectroscopy and nuclear reaction analysis. The films are shown to be chromium- and molybdenum-rich relative to the substrate, and to consist mainly of sulphates, oxides and hydroxides. The morphology and composition of the films are discussed in relation to the polarisation conditions and mechanism of film formation. A range of vapour deposited coatings are considered: TiN, TiC, TiB2, Graphit-iC, and diamond-like carbon coatings with Si and N2 dopants and with varying sp2:sp3 ratios. In addition, a hydrophobic coating is deposited on the stainless steel by immersion, in order to provide a significant variation in surface energy. Surface analysis of the coatings is carried out, considering their sp2:sp3 ratios, their electrical conductivities, their water contact angle, and the various components of the surface energy. The contamination build-up on the surface of uncoated 316L stainless steel is compared with that on stainless steel with the various surface modifications. A method for quantification of the build-up of contamination on flat samples is developed using white light interferometry. The surface modifications which result in the slowest contamination build-up with time are then applied to the ion transfer components of the mass spectrometer. The robustness of the mass spectrometric response for the selected coated surfaces is compared with that of the uncoated stainless steel. The electrochemically grown films and two of the doped diamond-like carbon coatings are found to be successful in reducing the build-up of contamination.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:713537 |
Date | January 2012 |
Creators | Doff, Julia |
Publisher | University of Manchester |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.research.manchester.ac.uk/portal/en/theses/surface-modification-of-ion-transfer-components-for-use-in-mass-spectrometers(e4e5d199-a290-4ce0-afdc-a52a62423f42).html |
Page generated in 0.0019 seconds