Return to search

L’analyse non standard en France 1975-1995 : une dispute avortée / Non Standard Analysis in France 1975-1995 : A failed quarrel

L’Analyse Non Standard (l’ANS) est un formalisme mathématique particulier inventé dans les années 1960 par le mathématicien A. Robinson. Ce formalisme permet de renouer avec les infinitésimaux de Leibniz qui avaient été abandonnés au XIXème siècle pour satisfaire aux exigences nouvelles de la « rigueur ». Sa pertinence a été contestée par divers mathématiciens parmi les plus grands et a donné naissance à une polémique dans les milieux mathématiques français ; les partisans de l’ANS en sont sortis vaincus et ne se sont plus guère exprimés après 1995. Un quart de siècle plus tard l’ANS est considérée au plan international comme une pratique tout à fait légitime et certains mathématiciens, à leur tour parmi les plus grands, en préconisent l’usage.Pourquoi cette mauvaise réception d’idées nouvelles en mathématiques dans un pays réputé pour son excellence dans ce domaine ?Il est normal que des idées révolutionnaires, voire simplement nouvelles, rencontrent de la résistance et suscitent un débat. Toutefois on observe que ce débat qui commençait à prendre de l’importance au début des années 1980 a été étouffé dans les années 1990 par ceux qui avaient en charge les institutions de la communauté mathématique. Pourquoi ce refus du débat ?La thèse soutenue est que, à cette époque, une des fonctions que l’idéologie dominante assigne aux mathématiques est de dire le vrai ; par exemple les théories économiques libérales prétendent à la scientificité parce que fortement mathématisées. Ne dit-on pas c’est mathématique pour affirmer d’une chose qu’elle est inéluctable. Une dispute trop visible sur la nature de la rigueur mathématique aurait risqué de brouiller cette image du mathématicien. Dans le même ordre d’idées, à la même époque, la communauté mathématique (et plus généralement scientifique) avait refusé de débattre avec un de ses membres les plus brillants, A. Grothendieck, de la responsabilité sociale du savant.Cette question de la réception de l’ ANS illustre la thèse bien connue que si une science se développe en partie pour résoudre des problèmes qu’elle se pose à elle même, ici donner un statut logique irréprochable à la pratique des infinitésimaux, cette motivation interne ne suffit pas à elle seule à expliquer tous les aspects de son développement. Les savants doivent tenir compte de la société dans laquelle ils vivent. Il est intéressant de faire ce constat dans le domaine des mathématiques dites pures, c’est à dire qui se prétendent en dehors de toute contrainte et ne travailler que pour l’honneur de l’esprit humain, pour reprendre la célèbre formule de Jacobi. / Non Standard Analysis (ANS) is a particular mathematical formalism invented in the 1960s by the mathematician A. Robinson. This formalism allows to reconnect with the infinitesimals of Leibniz which had been abandoned in the nineteenth century to satisfy the new requirements of rigor. Its relevance has been challenged by various mathematicians among the greatest and gave birth to a controversy in the French mathematical circles ; the supporters of the ANS came out defeated and hardly spoke after 1995. A quarter of a century later, ANS is considered internationally as a perfectly legitimate practice and some mathematicians, including famous ones, advocate its use.Why this bad reception of new ideas in a country renowned for its excellence in the field of mathematical research?It is natural for revolutionaries, or simply news ideas, to be at the origin of resistance and debate. However, we observe that this debate, which was starting and gaining importance in the early 1980’s, was stifled by those who were in charge of the institutions of the mathematical community. Why this refusal of debate?My thesis is that, at this time, one of the functions that the dominant ideology assigned to mathematics was to « say the truth »; for example liberal economic theories claim to scientificity because they are highly mathematized. It is commun to say « it is mathematical » to say that something is unavoidable. A dispute too visible about the nature of mathematical rigor could blur this image of the mathematician. In the same vein, at the same time, the mathematical (and more generally scientific) community had refused to debate with one of its most brilliant members, A. Grothendieck, on the social responsibility of the scientist.This question of the reception of the ANS illustrates the well-known thesis that if a science develops partly to solve problems that it poses to itself, in our case to give an irreproachable logical status to the practice of infinitesimals, this internal motivation is not enough on its own to explain all aspects of its development. Scholars must consider the society in which they live. It is interesting to make this observation in the so-called field of pure mathematics, which claim to be free from all constraints and work only « for the honor of the human mind » to use Jacobi's famous formula.

Identiferoai:union.ndltd.org:theses.fr/2019AZUR2017
Date10 September 2019
CreatorsLobry, Claude
ContributorsCôte d'Azur, Gautero, Jean-Luc
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds