Return to search

Properties of nickel and antimony doped tin oxide electrode material in relation to electrochemical generation of ozone

In this study, the properties of nickel and antimony doped tin oxide (NATO) electrode materials were investigated in relation to the electrochemical generation of ozone. The performance of NATO materials was correlated to ·OH radical generation and oxygen adsorption properties.

Long-time ozone generation results suggested that surface property changes, including surface morphology, chemical composition and electro-catalyst thickness, could lead to ozone production rate decreased from 137 to 0 mg·h-1 and the current efficiency declined from 18% to 0. The loss of Ni in the electrode was suggested for the decrease in ozone generation. Moreover, material characterization results indicated the presence of NiOOH and multiple oxidation states of Sb (+3 and +5), which were proposed as the critical sites for the electrochemical generation of ozone.

In addition, NATO nanocrystals of 3.5 ~ 7.5 nm in size prepared by the hydrothermal method were used as an alternative route to fabricate electrodes. The highest current efficiency of 41% was achieved on NATO material of 6% Sb in the precursor, which led to the lowest resistivity of 2.38 ± 0.03 Ω·cm in the product NATO material. This further demonstrated the applicability of NATO materials used as electro-catalysts for the electrochemical generation of ozone.

Hydroxyl free radicals (·OH) can be regarded as one of the most important intermediates for ozone generation. The presence of ·OH radicals was quantified by fluorescence spectroscopy with terephthalic acid as probes. Quantitative analysis results showed that Ni dopant could significantly enhance ·OH generation, while over-doping of Sb and Ni can decrease the generation of ·OH radicals.

An oxygen chemisorption study on NATO materials showed that more active sites available for oxygen chemisorption lead to higher catalytic activity for ozone generation. The highest oxygen chemisorption capacity of 49.76 μmol·g-1 was achieved on NATO-5 (Sn:Sb:Ni=1000:16:2), which showed the highest current efficiency of 43%. In addition, temperature programmed oxygen adsorption and desorption showed different patterns on different NATO materials. This suggested that oxygen adsorption on NATO materials has a correlation to the electrochemical generation of ozone.

In addition, oxygen adsorption was further investigated with near ambient oxygen adsorption. Oxygen adsorption isotherm results indicated that both physisorption and chemisorption can occur on the surface of SnO2 based material (NATO-5) with or without hydrogen pretreatment. When NATO-5 was treated with hydrogen, adsorption was mainly in the form of chemisorption. However, it was mainly in the form of physisorption without hydrogen pretreatment. By comparing NATO-6 (Sn:Sb:Ni=1000:16:0) with NATO-7 (Sn:Sb:Ni=1000:0:2), it was found that Sb was more important in the oxygen adsorption ability of NATO materials compared to Ni doping. Based on the findings in this study, two active sites (Sb and Ni sites) were proposed for ·OH generation and oxygen adsorption in order to explain the mechanism of ozone generation on NATO materials. Also, electrochemical generation of ozone was correlated with oxygen adsorption and ·OH generation. / published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy

Identiferoai:union.ndltd.org:HKU/oai:hub.hku.hk:10722/184243
Date January 2013
CreatorsWang, Bin, 王滨
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Source SetsHong Kong University Theses
LanguageEnglish
Detected LanguageEnglish
TypePG_Thesis
Sourcehttp://hub.hku.hk/bib/B50434305
RightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works., Creative Commons: Attribution 3.0 Hong Kong License
RelationHKU Theses Online (HKUTO)

Page generated in 0.0022 seconds