Return to search

Synergies between Asteroseismology and Three-dimensional Simulations of Stellar Turbulence

Turbulent mixing of chemical elements by convection has fundamental effects on the evolution of stars. The standard algorithm at present, mixing-length theory (MLT), is intrinsically local, and must be supplemented by extensions with adjustable parameters. As a step toward reducing this arbitrariness, we compare asteroseismically inferred internal structures of two Kepler slowly pulsating B stars (SPBs; M similar to 3.25M circle dot.) to predictions of 321D turbulence theory, based upon well-resolved, truly turbulent three-dimensional simulations that include boundary physics absent from MLT. We find promising agreement between the steepness and shapes of the theoretically predicted composition profile outside the convective region in 3D simulations and in asteroseismically constrained composition profiles in the best 1D models of the two SPBs. The structure and motion of the boundary layer, and the generation of waves, are discussed.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/624377
Date14 February 2017
CreatorsArnett, W. David, Moravveji, E.
ContributorsUniv Arizona, Steward Observ
PublisherIOP PUBLISHING LTD
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
TypeArticle
Rights© 2017. The American Astronomical Society. All rights reserved.
Relationhttp://stacks.iop.org/2041-8205/836/i=2/a=L19?key=crossref.f1ddd6ee470c6ce2e75199750262cbf7

Page generated in 0.002 seconds