Measurements of rates of period change of Classical Cepheids probe stellar physics and evolution. Additionally, better understanding of Cepheid structure and evolution provides greater insight into their use as standard candles and tools for measuring the Hubble constant. Our recent study of the period change of the nearest Cepheid, Polaris, suggested that it is undergoing enhanced mass loss when compared to canonical stellar evolution model predictions. In this work, we expand the analysis to rates of period change measured for about 200 Galactic Cepheids and compare them to population synthesis models of Cepheids including convective core overshooting and enhanced mass loss. Rates of period change predicted from stellar evolution models without mass loss do not agree with observed rates, whereas including enhanced mass loss yields predicted rates in better agreement with observations. This is the first evidence that enhanced mass loss as suggested previously for Polaris and δ Cephei must be a ubiquitous property of Classical Cepheids.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-17526 |
Date | 20 November 2012 |
Creators | Neilson, Hilding R., Langer, Norbert, Engle, Scott G., Guinan, Ed, Izzard, Robert |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0023 seconds