Using high resolution optical spectra from Mount John University Observatory, Mount Stromlo Observatory and the Anglo-Australian Observatory, new, high accuracy radial velocity curves have been obtained for the two bright southern Cepheids l carinae (HR 3884) and beta doradus (HR 1922). An indepth investigation into period variations, cycle-to-cycle and long-term variations in the velocity curves and the reliability of the combination of velocity data from different observatories is carried out. Evidence for shock waves in the atmosphere of l car and resonance in beta dor is discussed. A grid of static model atmospheres incorporating plane-parallel geometry is compared with the observational spectra of both Cepheids, using line depth ratios, to determine the variation in effective temperature, surface gravity and microturbulence with phase. This information is used to determine the phase dependence of the surface-brightness for both Cepheids. The surface brightness variation with phase was found to follow an almost linear relationship. The distance to and radius of the Cepheids are determined using both a near-infrared version of the Barnes-Evans method and the Fourier Baade-Wesselink (BW) method. The derived radii and distances agree within the limits of the errors for both methods. The Fourier BW method was found to be very sensitive to phase shifts between the photometric and spectroscopic data and the derived distance highly dependent on the assumed reddening. An investigation into line profile variations in l car and beta dor has revealed the magnitude of these phenomena increase as the pulsational period of the Cepheid increases. It is estimated that line level variations introduce an additional uncertainty into derived radii of approximately 4 per cent for beta dor and 10 per cent in lcar. The uncertainty introduced into derived distances and radii by line profile asymmetries was estimated to be of the order of 6 per cent in beta dor and 10 per cent in l car. A comparative analysis is made of the hydrogen line radial velocity curves of l car and beta dor. A trend in the properties of these radial velocity curves with period has been revealed. In longer period Cepheids, the Halpha line seems to be forming in a region that does not partake in the pulsation as a whole, probably in a chromospheric shell. A quantitative analysis of the asymmetries in these lines reveal large redward asymmetries near maximum infall velocity. The magnitude of these asymmetries and the period for which they are present are larger in l Car than in beta dor. The blueward asymmetries in the Halpha line in l Car are comparable in magnitude to the redward asymmetries while the other lines exhibit only small blueward asymmetries. A qualitative analysis of these line profiles with phase reveal no conclusive evidence for line doubling in these Cepheids. Evidence of emission is found in the Halpha and H Beta lines of beta dor and l car. The strength and duration of the emission is found to be greater in the longer period Cepheid. Although it is likely that this emission is shock-related, theoretical work is needed to determine the exact origin of the emission. A non-LTE radiative hydrodynamic model for l Car has been created. This atmosphere will be used in further work to calculate synthetic spectral line profiles which will aid the interpretation of our observational results.
Identifer | oai:union.ndltd.org:ADTP/215948 |
Date | January 1998 |
Creators | Taylor, Melinda Marie |
Publisher | University of Sydney, Physics |
Source Sets | Australiasian Digital Theses Program |
Language | English, en_AU |
Detected Language | English |
Rights | Copyright Taylor, Melinda Marie;http://www.library.usyd.edu.au/copyright.html |
Page generated in 0.0013 seconds