Return to search

Cold-start recommendations for the user- and item-based recommender systemalgorithm k-Nearest Neighbors

Recommender systems apply machine learning methods to solve the task of providing appropriate suggestions to users in both static and dynamic environments. An example of this is a movie service like Netflix that recommends movies to its users. Although many algorithms have been proposed, making predictions for users with few ratings remains a challenge in recommender systems. In this study the performance of the algorithm k-NN, both user- and item-based, was empirically evaluated. This was done using the MovieLens 1M and 100K datasets in scenarios where the users have between 1 and 9 ratings, simulating cold-start scenarios of various degree. The results were then compared with the accuracy of the algorithm in a simulated normal case, to see how the cold-start affected the two algorithms, and which one of them that handled it best. In summary, this report shows that user-based k-NN performs better in relation to item-based k-NN for new users having few rated items. Overall the accuracy improved as the number of ratings increased for the new users for both user- and item-based k-NN.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-208661
Date January 2017
CreatorsLorentz, Robert, Ek, Oskar
PublisherKTH, Skolan för datavetenskap och kommunikation (CSC)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds