Return to search

Point-of-load converters for a residential dc distribution system

This thesis studies residential dc distribution system with primary focus on point-of-load (POL) converters. The growing number of inherently dc loads, increasing penetration of distributed energy resources (DERs) and advancements in power electronic converters are some of the reasons to reconsider the existing residential ac distribution system. A dc distribution system can achieve higher efficiency by eliminating the ac-dc rectifiers and power factor correction stages currently used in most domestic electronic appliances. In this thesis, 380V is identified as a suitable voltage level for the main dc bus. Safety issues are discussed and common domestic loads are characterized. Two common converter topologies – buck and flyback converters are suggested as POL converters for heating and LED lighting loads respectively. State-feedback control is designed and implemented for buck converter and current mode control of flyback converter is implemented. A 500W POL buck converter using state-feedback with integral control is designed and tested for heating load applications. Finally a small dc distribution system is simulated using the converter models. The response of the system is stable under load and line changes. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2012-05-4971
Date09 July 2012
CreatorsDesai, Harshad Suresh
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf

Page generated in 0.0019 seconds