Return to search

CFD analysis of steady state flow reaction forces in a rim spool valve

Hydraulic spool valves are found in most hydraulic circuits in which flow is to be modulated. Therefore their dynamic performance is critical to the overall performance of the circuit. Fundamental to this performance is the presence of flow reaction forces which act on the spool. These forces can result in the necessity of using two stage devices to drive the spool and in some cases have been directly linked to valve and circuit instabilities. As such, a great deal of research and design has concentrated on ways to reduce or compensate for flow forces. In one particular series of studies conducted on flow divider valves, it was established that a rim machined into the land of the spool reduced the flow dividing error by approximately 70-80%, and it was deduced that the main contribution to this error was flow forces. Direct verification of the claim regarding flow force reduction was not achieved and hence was the motivation for this particular study. <p> This thesis will consider the reaction (flow) force associated with a conventional spool land and one with a rim machined into it, and a modified form of the rimmed land referred to as a sharp edge tapered rim spool land. The rim and the sharp edge tapered rim were specially designed geometrical changes to the lands of the standard spool in order to reduce the large steady state flow forces (SSFF) inherent in the standard spool valve. In order to analyze the flow field inside the interior passages of the valve, three configurations of the spool were considered for orifice openings of 0.375, 0.5, 0.75 and 1.05 mm. Computational Fluid Dynamics (CFD) analysis was used to describe the fluid mechanics associated with the steady state flow forces as it provided a detailed structure of the flow through the valve, and to identify the flow mechanism whereby flow forces are reduced by the machining of a rim and tapered rim on the land of the spool. For all openings of the spool, the sharp tapered rim valve provides the largest reduction in SSFF. It was also observed that for all cases studied, the inflow SSFFs were smaller than for the outflow conditions. <p>The prediction of the steady state flow force on the rim spool was investigated in a flow divider valve configuration, and the results from the CFD analysis indicated a reduction by approximately 70%.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-02202006-104500
Date20 February 2006
CreatorsOkungbowa, Norense Stanley
ContributorsSchoenau, Greg J., Evitts, Richard W., Burton, Richard T., Bugg, James D., Bergstrom, Donald J., Wu, Fang-Xiang
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-02202006-104500/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0027 seconds