Return to search

Interaction of instructional material order and subgoal labels on learning in programming

Expository instructions, worked examples, and subgoal labels have all been shown to positively impact student learning and performance in computer science education. This study examined whether learning and problem solving performance differed based on the sequence of the instructional materials (expository and worked examples) and the presence of subgoal labels within the instructional materials. Participants were 138 undergraduate college students, age 17-25, who watched two instructional videos on creating an application in the App Inventor programming language before completing several learning assessments. A significant interaction showed that when learners were presented with the worked example followed by the expository instructions containing subgoal labels, the learner was better at outlining the procedure for creating an application. These manipulations did not affect cognitive load, novel problem solving performance, explanations of solutions, or the amount of time spent on instructions and completing the assessments. These results suggest that the order instructional materials are presented have has little impact on problem solving, although some benefit can be gained from presenting the worked example before the expository instructions when subgoal labels are included. This suggests the order the instructions are presented to learners does not impact learning. Previous studies demonstrating an effect of subgoal labels used text instructions as opposed to the video instructions used in the present study. Future research should investigate how these manipulations differ for text instructions and video instructions.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/54459
Date07 January 2016
CreatorsSchaeffer, Laura M.
ContributorsCatrambone, Richard
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0016 seconds