In the first part of the thesis we explore the sensitivity to sterile neutrinos by using a novel kaon tagging technology: ENUBET, the proposed experiment could decisively test indications from the experiments Neutrino-4 and IceCube. In the second part of the thesis we discuss the current status of sterile neutrino searches at nuclear reactors, we present a study with the optimization of a green field, two baseline reactor experiment with respect to the sensitivity for electron anti-neutrino disappearance in search of a light sterile neutrino at both research and commercial reactors. We find that a total of 5 tons of detectors deployed at a commercial reactor with a closest approach of 25 m can probe the mixing angle sin²2θ down to ∼ 5 × 10⁻³ around ∆m² ∼ 1 eV² . The same detector mass deployed at a research reactor can be sensitive up to ∆m² ∼ 20 − 30 eV² assuming a closest approach of 3 m and excellent energy resolution, such as that projected for TAO. We also find that lithium doping of the reactor could be effective in increasing the sensitivity for higher ∆m² values. / Master of Science / A sterile neutrino is a particle that is not included in the actual content of matter at the fundamental level. Our goal in this thesis was to search for an imprint of this particle at neutrino experiments. We performed numerical simulations using the experimental specification given in the literature to predict what this signal should look like. The importance of searching for this particle arises from indications at neutrino nuclear experiments, if this particle exists, that would imply new physics beyond our actual understanding of the matter content in the universe. The first search was performed at an experimental facility called ENUBET and the second search was performed at nuclear reactors. Testing this elusive particle means we need to determine two parameters from a model. The results of the aforementioned parameter space searches are presented in this thesis. The statistical significance in our findings is not entirely conclusive to either confirm or refute the sterile neutrino. The benefits of studying neutrinos at nuclear reactors is that they are produced in generating electrical power as well as monitoring nuclear weapons.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/103875 |
Date | 15 June 2021 |
Creators | Delgadillo Franco, Luis Angel |
Contributors | Physics, Huber, Patrick, Shoemaker, Ian M., O'Donnell, Thomas, Horiuchi, Shunsaku |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0022 seconds