Return to search

Frequency-domain diffuse optical spectroscopy for cardiovascular and respiratory applications

Frequency Domain Diffuse Optical Spectroscopy (FD-DOS) is an emerging optical technique that uses near infrared light to probe the hemodynamics of biological tissue. Compared to more common Continuous Wave (CW) methods, FD-DOS uses light that is temporally modulated on the order of MHz to quantify the absorption and scattering of tissue. FD-DOS can also be used to obtain absolute concentration of tissue chromophores such as oxy- and deoxy-hemoglobin, which allow for quantitative measurements of tissue hemodynamics. This dissertation focuses on the evolution of our lab’s custom digital FD-DOS as a platform for taking optical measurement of biological tissue for respiratory and cardiovascular applications. Several important instrumentation improvements will be reviewed that have enhanced the performance of the system while making it more portable and clinic ready. Two translational applications will be described in detail: 1) the use of high-speed FD-DOS for the non-invasive extraction of venous oxygen saturation (SvO2) and 2) the use of FD-DOS to monitor the hemodynamics of the sternocleidomastoid (SCM) muscle towards the non-invasive monitoring of patients on mechanical ventilation. The custom FD-DOS system parameters were adjusted for each application, with a focus on high speed to extract the cardiac signal for the SvO2 project, and a focus on high SNR to measure the highly absorbing SCM. Measurements on healthy volunteers and rabbits were used to assess the feasibility of using FD-DOS for these applications. Finally, preliminary work was conducted to characterize a miniature FD-DOS source and detector with the goal of moving towards a wearable version of FD-DOS. / 2022-05-15T00:00:00Z

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/42606
Date15 May 2021
CreatorsIstfan, Raeef Eric
ContributorsRoblyer, Darren M.
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0028 seconds