Imagine your local creamery administers a survey asking their patrons to choose their five favorite ice cream flavors. Any data collected by this survey would be an example of partially ranked data, as the set of all possible flavors is only ranked into subsets of the chosen flavors and the non-chosen flavors. If the creamery asks you to help analyze this data, what approaches could you take? One approach is to use the natural symmetries of the underlying data space to decompose any data set into smaller parts that can be more easily understood. In this work, I describe how to use permutation representations of the symmetric group to create and study efficient algorithms that yield such decompositions.
Identifer | oai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:hmc_theses-1061 |
Date | 01 January 2014 |
Creators | McDermott, Matthew |
Publisher | Scholarship @ Claremont |
Source Sets | Claremont Colleges |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | HMC Senior Theses |
Rights | © 2014 Matthew McDermott |
Page generated in 0.0019 seconds