Particle distribution and settling in suspensions with non-Newtonian liquids agi-
tated with a Rushton turbine in a lab-scale tank have been studied. The rheology
of the non-Newtonian liquids can be described by the power-law, Bingham and
Herschel-Bulkley fluid models. The dynamics of the dispersed phase settling
particles (size 0.65mm) is modeled by a Lagrangian tracking approach while the
liquid phase is resolved by the lattice-Boltzmann method.
Qualitative insight emerging from exploration of shear-thinning/thickening, New-
tonian, yield-stress fluid models at Reynolds number, Re=6 103 , 8.5 103 and
1.25 104 indicate that bottom particle concentration is highest in power-law liq-
uids than in Newtonian; while yield stress fluids had more uniform particle con-
centration and least bottom concentration. Also, turbulent kinetic energy and vis-
cous dissipation are highest in the Newtonian liquid. Extra viscous diffusion due
to fluctuating non-Newtonian viscosity in the turbulent kinetic energy equation
attributes to these differences. / Chemical Engineering
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:AEU.10048/638 |
Date | 11 1900 |
Creators | Sekyi, Elorm |
Contributors | J. Derksen (Chemical & Materials Eng. Dept.), S. Kresta (Chemical & Materials Eng. Dept.), M. Flynn (Mechanical Eng. Dept.) |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis |
Format | 5309448 bytes, application/pdf |
Page generated in 0.0019 seconds