Outcome dependent sampling may increase efficiency in observational studies. It is however not always obvious how to sample efficiently, and how to analyze the resulting data without introducing bias. This thesis describes a general framework for efficiency calculations in multistage sampling, with focus on what is sometimes referred to as ascertainment sampling. A method for correcting for the sampling scheme in analysis of ascertainment samples is also presented. Simulation based methods are used to overcome computational issues in both efficiency calculations and analysis of data. / At the time of doctoral defense, the following paper was unpublished and had a status as follows: Paper 1: Submitted.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-49328 |
Date | January 2011 |
Creators | Grünewald, Maria |
Publisher | Stockholms universitet, Matematiska institutionen, Stockholm : Department of Mathematics, Stockholm University |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0059 seconds