Return to search

Méthodes quantitatives pour l'étude asymptotique de processus de Markov homogènes et non-homogènes / Quantitative methods for the asymptotic study of homogeneous and non-homogeneous Markov processes

L'objet de cette thèse est l'étude de certaines propriétés analytiques et asymptotiques des processus de Markov, et de leurs applications à la méthode de Stein. Le point de vue considéré consiste à déployer des inégalités fonctionnelles pour majorer la distance entre lois de probabilité. La première partie porte sur l'étude asymptotique de processus de Markov inhomogènes en temps via des inégalités de type Poincaré, établies par l'analyse spectrale fine de l'opérateur de transition. On se place d'abord dans le cadre du théorème central limite, qui affirme que la somme renormalisée de variables aléatoires converge vers la mesure gaussienne, et l'étude est consacrée à l'obtention d'une borne à la Berry-Esseen permettant de quantifier cette convergence. La distance choisie est une quantité naturelle et encore non étudiée dans ce cadre, la distance du chi-2, complétant ainsi la littérature relative à d'autres distances (Kolmogorov, variation totale, Wasserstein). Toujours dans le contexte non-homogène, on s'intéresse ensuite à un processus peu mélangeant relié à un algorithme stochastique de recherche de médiane. Ce processus évolue par sauts de deux types (droite ou gauche), dont la taille et l'intensité dépendent du temps. Une majoration de la distance de Wasserstein d'ordre 1 entre la loi du processus et la mesure gaussienne est établie dans le cas où celle-ci est invariante sous la dynamique considérée, et étendue à des exemples où seule la normalité asymptotique est vérifiée. La seconde partie s'attache à l'étude des entrelacements entre processus de Markov (homogènes) et gradients, qu'on peut interpréter comme un raffinement du critère de Bakry-Emery, et leur application à la méthode de Stein, qui est un ensemble de techniques permettant de majorer la distance entre deux mesures de probabilité. On prouve l'existence de relations d'entrelacement du second ordre pour les processus de naissance-mort, allant ainsi plus loin que les relations du premier ordre connues. Ces relations sont mises à profit pour construire une méthode originale et universelle d'évaluation des facteurs de Stein relatifs aux mesures de probabilité discrètes, qui forment une composante essentielle de la méthode de Stein-Chen. / The object of this thesis is the study of some analytical and asymptotic properties of Markov processes, and their applications to Stein's method. The point of view consists in the development of functional inequalities in order to obtain upper-bounds on the distance between probability distributions. The first part is devoted to the asymptotic study of time-inhomogeneous Markov processes through Poincaré-like inequalities, established by precise estimates on the spectrum of the transition operator. The first investigation takes place within the framework of the Central Limit Theorem, which states the convergence of the renormalized sum of random variables towards the normal distribution. It results in the statement of a Berry-Esseen bound allowing to quantify this convergence with respect to the chi-2 distance, a natural quantity which had not been investigated in this setting. It therefore extends similar results relative to other distances (Kolmogorov, total variation, Wasserstein). Keeping with the non-homogeneous framework, we consider a weakly mixing process linked to a stochastic algorithm for median approximation. This process evolves by jumps of two sorts (to the right or to the left) with time-dependent size and intensity. An upper-bound on the Wasserstein distance of order 1 between the marginal distribution of the process and the normal distribution is provided when the latter is invariant under the dynamic, and extended to examples where only the asymptotic normality stands. The second part concerns intertwining relations between (homogeneous) Markov processes and gradients, which can be seen as refinment of the Bakry-Emery criterion, and their application to Stein's method, a collection of techniques to estimate the distance between two probability distributions. Second order intertwinings for birth-death processes are stated, going one step further than the existing first order relations. These relations are then exploited to construct an original and universal method of evaluation of discrete Stein's factors, a key component of Stein-Chen's method.

Identiferoai:union.ndltd.org:theses.fr/2017TOU30107
Date28 June 2017
CreatorsDelplancke, Claire
ContributorsToulouse 3, Joulin, Aldéric, Miclo, Laurent
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds