Return to search

Computational methods for stochastic control problems with applications in finance

Stochastic control is a broad tool with applications in several areas of academic interest. The financial literature is full of examples of decisions made under uncertainty and stochastic control is a natural framework to deal with these problems. Problems such as optimal trading, option pricing and economic policy all fall under the purview of stochastic control. These problems often face nonlinearities that make analytical solutions infeasible and thus numerical methods must be employed to find approximate solutions. In this dissertation three types of stochastic control formulations are used to model applications in finance and numerical methods are developed to solve the resulting nonlinear problems. To begin with, optimal stopping is applied to option pricing. Next, impulse control is used to study the problem of interest rate control faced by a nation's central bank, and finally a new type of hybrid control is developed and applied to an investment decision faced by money managers. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/24945
Date01 July 2014
CreatorsMitchell, Daniel Allen
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0169 seconds