The distribution of liquid gazes (or cryogenic liquids) using bulks and tractors is a particular aspect of a fret distribution supply chain. Traditionally, these optimisation problems are treated under certainty assumptions. However, a large part of real world optimisation problems are subject to significant uncertainties due to noisy, approximated or unknown objective functions, data and/or environment parameters. In this research we investigate both robust and stochastic solutions. We study both an inventory routing problem (IRP) and a production planning and customer allocation problem. Thus, we present a robust methodology with an advanced scenario generation methodology. We show that with minimal cost increase, we can significantly reduce the impact of the outage on the supply chain. We also show how the solution generation used in this method can also be applied to the deterministic version of the problem to create an efficient GRASP and significantly improve the results of the existing algorithm. The production planning and customer allocation problem aims at making tactical decisions over a longer time horizon. We propose a single-period, two-stage stochastic model, where the first stage decisions represent the initial decisions taken for the entire period, and the second stage representing the recovery decision taken after an outage. We aim at making a tool that can be used both for decision making and supply chain analysis. Therefore, we not only present the optimized solution, but also key performance indicators. We show on multiple real-life test cases that it isoften possible to find solutions where a plant outage has only a minimal impact.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00910097 |
Date | 03 June 2013 |
Creators | Dubedout, Hugues |
Publisher | Ecole des Mines de Nantes |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0022 seconds