Return to search

A Survey of Systems for Predicting Stock Market Movements, Combining Market Indicators and Machine Learning Classifiers

In this work, we propose and investigate a series of methods to predict stock market movements. These methods use stock market technical and macroeconomic indicators as inputs into different machine learning classifiers. The objective is to survey existing domain knowledge, and combine multiple techniques into one method to predict daily market movements for stocks. Approaches using nearest neighbor classification, support vector machine classification, K-means classification, principal component analysis and genetic algorithms for feature reduction and redefining the classification rule were explored. Ten stocks, 9 companies and 1 index, were used to evaluate each iteration of the trading method. The classification rate, modified Sharpe ratio and profit gained over the test period is used to evaluate each strategy. The findings showed nearest neighbor classification using genetic algorithm input feature reduction produced the best results, achieving higher profits than buy-and-hold for a majority of the companies.

Identiferoai:union.ndltd.org:pdx.edu/oai:pdxscholar.library.pdx.edu:open_access_etds-3001
Date14 March 2013
CreatorsCaley, Jeffrey Allan
PublisherPDXScholar
Source SetsPortland State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations and Theses

Page generated in 0.0019 seconds