Return to search

Balancing the Water Budget: the effect of plant functional type on infiltration to harvest ratios in stormwater bioretention cells

Stormwater bioretention cells (BRCs) are a variety of green stormwater infrastructure with the potential to restore pre-urban water balance, provided they can be tailored to infiltrate and evapotranspire (i.e., harvest) urban runoff in proportions consistent with pre-urban hydrologic conditions. This paper evaluates their capacity to do so, focusing on evapotranspirative harvest, which is relatively understudied, and the capacity of CSR (Competitve, Stress-tolerant, and Ruderal) functional type to serve as an overarching framework characterizing the water use strategy of BRC plants. The goal is to determine if harvest (and therefore the ratio of urban runoff infiltrated to harvested; the I:H ratio) might be fine-tuned to meet pre-urban values in BRCs through informed manipulation of plant community composition. This study focuses on 3 critical plant water use traits, the turgor loss point, the point of incipient water stress, and maximum stomatal conductance. A global plant traits meta-analysis identified degree of plant competitiveness and stress tolerance as significant determinants of all three water use traits, with stem type (woody vs herbaceous) also being significant, but only for turgor loss point. Based on these results, six water use scenarios appropriate for plants with different CSR type/stem type combinations were developed. BRC plants spanning the range of CSR types necessary to actionize these scenarios were determined to be available in eight major climate zones of the coterminous US, suggesting that regulating plant water use in BRCs using CSR is likely feasible. Hydraulic simulations (Hydrus 1D) were conducted for each scenario in all eight climate zones and revealed significant differences in evapotranspirative harvest and I:H ratios in simulated BRCs. Competitive woody plants had the highest evapotranspiration and lowest I:H ratios; 1.5-1.8 times more evapotranspiration and a 1.6-2 times lower I:H ratio than stress tolerant herbaceous plants, on average, across climate zones. Despite these significant differences, no simulated BRC in any climate zone was capable of reproducing pre-urban I:H ratios, regardless of plant type. More water was infiltrated than harvested in all scenarios and climates with the inverse being true for all pre-urban conditions. This suggests that absent additional sources of harvest (e.g., use of BRC water for nonpotable purposes such as toilet flushing and outdoor irrigation, or adoption of novel BRC designs that promote lateral exfiltration, stimulating "extra" evapotranspiration from nearby landscapes), BRCs will be unable to restore pre-urban water balance on their own. If true, then using BRCs in combination with other green technologies (particularly those biased towards harvest), may be the best path forward for balancing urban water budgets. / Master of Science / Stormwater bioretention cells (BRCs) are a variety of green infrastructure designed to manage urban stormwater flows that can dramatically reduce the amount of stormwater that is rapidly (and unnaturally) conveyed from paved surfaces to ecosystems. Their ability to recreate natural flow conditions is dependent on them balancing rates of infiltration – slowly filtering water down to the water table – and evapotranspiration – letting plants capture and transpire water. This paper evaluates the extent to which different plant functional types (competitive, stress tolerant, and ruderal (weedy)) can be used to regulate this balance, bringing urban hydrologic conditions closer to pre-urban ones. Competitiveness and stress tolerance were found to significantly influence plant water use traits, as was plant stem type (woody vs herbaceous) to a lesser extent (i.e., managing water budgets using CSR functional type is theoretically possible). Published BRC vegetation guidelines in 8 major US climate zones were found to include both competitive and stress tolerant species (i.e., the range of functional types required to regulate BRC water balance exists, suggesting it is feasible). Finally, hydraulic simulations conducted under six plant water use scenarios (reflecting different CSR types and stem types) revealed significant differences in the ratio of water infiltrated to evapotranspired by BRCs (i.e., changing plant functional types can meaningfully influence BRC water balance). This said, the magnitude of this effect may be insufficient to return urban catchments to a pre-urban state. All BRCs infiltrated too much water in our simulations suggesting that absent additional sources of harvest (for instance., use of BRC water for nonpotable purposes such as toilet flushing or outdoor irrigation), BRCs will be unable to restore pre-urban water balance on their own. If true, then using BRCs in combination with other green technologies (particularly those biased towards harvest), may be the best path forward for balancing urban water budgets.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/101970
Date19 January 2021
CreatorsKrauss, Lauren Marie
ContributorsEnvironmental Science and Engineering, Rippy, Megan A., Grant, Stanley B., Badgley, Brian D.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0025 seconds