Computer data storage is growing at an astonishing rate. With cloud computing and the growth of the Internet enterprise storage has been predicted to grow at rates as high as 300\% per year. To fulfill this need technologies such as Redundant Array of Independent Disks or RAID are being used in industry today. Not only does RAID increase I/O performance but also provides redundancy measures to protect against hardware failure. Even though RAID has existed for some time now and is well understood, proprietary optimizations such as command scheduling and cache strategies that are employed by current RAID controllers are not well known. This thesis presents a model for RAID 5 that incorporates these features and describes the overall function of hardware RAID controllers. Also a python implementation of this model, Accurate Hardware RAID Simulator (AHRS) is presented and validated against a current hardware RAID controller. It is shown that AHRS can reproduce the behavior of a hardware RAID system with an accuracy of 97.92\% on average compared to a LSI hardware RAID controller.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-2105 |
Date | 01 June 2013 |
Creators | Weng, Darrin Kalung |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0018 seconds