Return to search

Characterisation of the flexural behaviour of Aluminium Foam Sandwich Structures

Aluminium foam has a range of properties that are desirable in many applications. These properties include good stiffness and strength to weight ratios, impact energy absorption, sound damping, thermal insulation and non combustibility. Many of these characteristics are particularly attractive for core materials within sandwich structures. The combination of aluminium foam cores with thermoplastic composite skins is easily manufactured and has good potential as a multifunctional sandwich structure useful in a range of applications. This thesis has investigated the flexural behaviour of such structures using a combination of experimental and modelling techniques. The development of these structures towards commercial use requires a thorough understanding of the deformation and strain mechanisms of the structure, and this will, in turn, allow predictions of their structural behaviour in a variety of loading conditions.
ΒΆ
The experimental research involved the use of an advanced 3D optical measuring technique that produces realtime, full-field strain evolution during loading. This experimental characterisation of strain evolution in this class of sandwich structure under flexural loading is the first of its kind in the world. The experimental work studied the sandwich structure undergoing four-point bend testing. Initial studies compared the behaviour of the aluminium foam structure with a more traditional polymer foam sandwich structure. The aluminium foam structure was found to have equivalent or improved mechanical properties including more ductile deformation and an enhanced energy absorption. An investigation was conducted on the effect of core and skin thickness on the metal structure and a range of flexural behaviours were observed. Analysis of the strain distribution showed a complex development including localised effects from the non-uniform cellular structure of the material. An understanding of the variation with size is important in establishing design methods for utilising these structures. In particular, it is desirable that finite element simulations can be used to predict behaviour of these structures in a diverse range of loading conditions. This aspect was considered in the second half of this study. An existing constitutive model for aluminium foam, developed for use in compression energy absorption studies, was used to investigate finite element simulations of the flexural behaviour of the sandwich structure. The FE model was able to predict the general deformation behaviour of the thinner skinned structures although the magnitude of the load-displacement response was underestimated. It is suggested this may be related to the size effect on the input parameter characterisation. The strain distribution corresponded well with the experimental strain measurements. It was found a simple increase in the material model input parameters was able to more closely match the magnitude of the load-displacement response while maintaining the appropriate strain distribution. The general deformation shape of the model with the thicker skin corresponded reasonably well with the experimental observations. However, further work is necessary on the element failure criterion to capture the shear cracking observed. The strain distributions of the model predicted this failure with high strain concentrations matching those of the experimental contours. The last part of the thesis describes a parametric study on the effect of the foam material model input parameters on the flexural behaviour of the sandwich structure model. An important conclusion of this work is that this material model for aluminium foam can, with some development, be utilized to provide a viable method for simulating aluminium foam composite sandwich structures in flexural loading situations.

Identiferoai:union.ndltd.org:ADTP/216886
Date January 2008
CreatorsStyles, Millicent, milli.styles@anu.edu.au
PublisherThe Australian National University. Faculty of Engineering and Information Technology
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.anu.edu.au/legal/copyrit.html), Copyright Millicent Styles

Page generated in 0.002 seconds