Return to search

The efficiency of turbulent mixing in stratified fluids

Mixing is a common feature of stratified fluids. In stratified fluids the density varies with the height. This is true for the most fluids in geophysical environments, like lakes, the atmosphere or the ocean. Turbulent mixing plays a crucial role for the overall energy budget of the earth and has therefore an huge impact on the global climate. By introducing the mixing efficiency, it is possible to quantify mixing. It is defined as the ratio of gain of potential energy to the injection of mechanical energy. In the ocean energy provided by tidal forces leads to turbulence and thus highly dense water is lifted up from the deep sea to the surface. For this process, a mixing efficiency of 0.2 is estimated. Until now it is not completely understood how this high value can be achieved. Thus we measured the mixing efficiency by using a Couette-Taylor system, which can produce steady-state homogeneous turbulence. This is similar to what we find in the ocean. The Couette-Taylor system consists of two concentric cylinders that can be rotated independently. In between a stratified fluid is filled using salt as a stratifying agent. In the laboratory experiment, we obtained mixing efficiencies in the order of 0.001 as a result. Moreover we found that the mixing efficiency decreases with decreasing stratification like previous laboratory experiments have shown. As this value is two orders of magnitude smaller than what we find in the ocean, further studies will be necessary. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2010-08-1876
Date03 January 2011
CreatorsEbert, Guenther Wolfgang
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf

Page generated in 0.002 seconds