Return to search

Hybrid (osmotic, microwave-vacuum) drying of strawberries and carrots

The main purpose of this study was to improve the performance of microwave assisted drying. The osmotic treatment was used as pretreatment due to its inherent low energy requirement attributes. The vacuum was applied to microwave drying system to capture low temperature vaporization concepts. The whole process might be called "osmotically dehydrated microwave vacuum drying". Carrots and strawberries were selected to study as a representative of vegetables and fruits, respectively. / The laboratory scale microwave vacuum dryer was setup and the preliminary tests were done with carrots and strawberries. The occurrence of condensation of vapor in vacuum container was found during the drying trials. The location of the open-ended valve which controls the vacuum level was found to have an influence on the condensation. The re-location of valve which allowed air passage to the vacuum container was able to decrease the condensation. The input power for the microwave vacuum drying could not be greater than 1.5 W/g. The continuous use of input power caused the high temperature in the process. The pulse mode (on/off) was recommended for further studies. / Water removal and solid gain of osmotic treatment were considered as factors that affect the dielectric properties dielectric constant (epsilon') and the loss factor (epsilon"). The experiment was set up to investigate the influence of osmotic conditions to dielectric properties. Two osmotic agents, sucrose and salt, were used for carrots; but only sucrose was used for strawberries. The effects of variations in sucrose and salt concentrations, solution temperatures, and length of immersion time on the dielectric properties were studied. The empirical models were generated from response surface methodology (RSM) to predict epsilon' and epsilon" for the various ranges of osmotic conditions considered in this thesis. / As a consideration of the osmotic pre-drying treatment, it was considered appropriate to maximize water loss (WL) and minimize solid gain (SG). The parameter appropriate to study this situation was WL/SG. The optimum conditions of osmotic process to acquire the maximum ratio of WL/SG were investigated. The results of the optimum conditions for carrots were found to be sucrose concentration 50%(w/w), salt concentration 5%(w/w), temperature 20°C and immersion time 3 hours 38 minutes. The optimum conditions for strawberries were found to be sucrose concentration 60%(w/w), temperature 20°C and immersion time 24 hours. / The microwave vacuum drying was then studied as a technique combined with the osmotic pretreatment. The studies were performed on carrots and strawberries. The input power levels 1 and 1.5 W/g with different power modes (continuous, 45s on/15s off and 30s on/30s off) were experimentally studied with a certain condition of osmotic treatment, which was acquired from the previous study. Osmotic treatment prior to microwave vacuum of carrots showed the advantage in most cases; fast drying time, less energy consumption and superior quality aspects except the taste which was affected from the salt. The study of strawberries did not show great advantage of osmotic pretreatment. The drying time and energy consumption of the process with and without osmotic pretreatment were the same but the process with osmotic pre-treatment resulted in better quality of dried strawberries. / The microwave vacuum drying of carrots and strawberries after osmotic pretreatment did not show constant rate period in drying rate curve while the processes without osmotic treatment of strawberries showed longer constant rate period than those observed for carrot drying. According to these phenomena, thin layer models of Lewis and Henderson & Pabis were fitted to the observed data which showed excellent fit for the process without constant rate period, but Page's model was a good fit for both constant rate and falling rate period of microwave vacuum drying.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.102966
Date January 2006
CreatorsChangrue, Viboon.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Bioresource Engineering.)
Rights© Viboon Changrue, 2006
Relationalephsysno: 002590049, proquestno: AAINR32163, Theses scanned by UMI/ProQuest.

Page generated in 0.0019 seconds