Integration of dynamic data is critical for reliable reservoir description and has been an outstanding challenge for the petroleum industry. This work develops practical dynamic data integration techniques using streamline approaches to condition static geological models to various kinds of dynamic data, including two-phase production history, interference pressure observations and primary production data. The proposed techniques are computationally efficient and robust, and thus well-suited for large-scale field applications. We can account for realistic field conditions, such as gravity, and changing field conditions, arising from infill drilling, pattern conversion, and recompletion, etc., during the integration of two-phase production data. Our approach is fast and exhibits rapid convergence even when the initial model is far from the solution. The power and practical applicability of the proposed techniques are demonstrated with a variety of field examples.
To integrate two-phase production data, a travel-time inversion analogous to seismic inversion is adopted. We extend the method via a 'generalized travel-time' inversion to ensure matching of the entire production response rather than just a single time point while retaining most of the quasi-linear property of travel-time inversion. To integrate the interference pressure data, we propose an alternating procedure of travel-time inversion and peak amplitude inversion or pressure inversion to improve the overall matching of the pressure response.
A key component of the proposed techniques is the efficient computation of the sensitivities of dynamic responses with respect to reservoir parameters. These sensitivities are calculated analytically using a single forward simulation. Thus, our methods can be orders of magnitude faster than finite-difference based numerical approaches that require multiple forward simulations.
Streamline approach has also been extended to identify reservoir compartmentalization and flow barriers using primary production data in conjunction with decline type-curve analysis. The streamline 'diffusive' time of flight provides an effective way to calculate the drainage volume in 3D heterogeneous reservoirs. The flow barriers and reservoir compartmentalization are inferred based on the matching of drainage volumes from streamline-based calculation and decline type-curve analysis. The proposed approach is well-suited for application in the early stages of field development with limited well data and has been illustrated using a field example from the Gulf of Mexico.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/1188 |
Date | 15 November 2004 |
Creators | He, Zhong |
Contributors | Datta-Gupta, Akhil |
Publisher | Texas A&M University |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Dissertation, text |
Format | 11578917 bytes, 294814 bytes, electronic, application/pdf, text/plain, born digital |
Page generated in 0.002 seconds