Return to search

FRP rupture strains in FRP wrapped columns

Applying lateral confinement to concrete columns using fibre-reinforced polymer (FRP) composites is a very promising technique. FRP rupture is the typical failure mode of FRP wrapped columns under axial compression. numerous experiments have shown that the FRP rupture strain in an FRP wrapped circular column is significantly lower than the FRP ultimate rupture strain determined from flat coupon test of FRP. Despite a large number of studies on the application of FRP confined columns, the mechanisms and level of lower-than-apparent FRP rupture strain still remain unclear. This thesis presents theoretical, Numerical and experimental studies aiming at developing a deeper understanding of the fundamental mechanisms of this phenomenon. A comprehensive literature review was presented providing the background on FRP confined columns, material properties of FRP composites as well as some factors which may lead to premature FRP rupture. A FE analysis was conducted to investigate the FRP hoop strains in the split-disk test, explaining for the first time that the fundamental mechanism of the lower FRP rupture strain in the split-disk test than in the flat coupon test is because strain localisation due to geometric discontinuities at the ends of the FRP and bending of the FRP ring at the gap due to change of curvature caused by the relative moment of the two half disks, as the FRP (as a brittle material) ruptures once the maximum strain at one of these locations reaches the FRP rupture strain. A list of contributory factors affecting the apparent FRP rupture strain in FRP wrapped columns were next identified and classified. An analytical solution was developed to investigate the influence of the triaxial stress state on the FRP strain efficiency, this factor has been shown to have a potentially significant effect on the failure of the FRP wrap but considerable discrepancies exist between predictions using different failure criteria so further research has been identified in this area. FE models were developed to examine the effect of the geometrical discontinuities on the strain efficiency of FRP jackets in FRP wrapped concrete-filled circular steel tubes and FRP wrapped concrete columns. It is demonstrated that severe FRP hoop strain concentrations occur in very small zones near the ends of the FRP wrap in both types of FRP wrapped columns, leading to premature FRP rupture and thus lower strain efficiency. The combined effects of end constraint and FRP overlap on the behaviour of FRP wrapped concrete columns was investigated using a three dimensional FE model considering one half of the length of an FRP-wrapped concrete cylinder. The results have shown that the frication between both ends of a column and the loading platens provides constraints to the ends of the column, but this constraint has little effect on the strain concentration caused by the geometrical discontinuities of the FRP overlap, though the ultimate axial strain of the FRP wrapped columns can be significantly overestimated if the end constraints are not considered.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:563775
Date January 2012
CreatorsLi, Shiqing
ContributorsChen, Jian-Fei. : Bisby, Luke
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/6246

Page generated in 0.002 seconds