Bacteriophages, or simply "phages," are the most abundant biological entities on the planet and are thought to be the largest untapped reservoir of available genetic information. They are also important contributors to both soil health and nutrient recycling and have significantly influenced our current understanding of molecular biology. Bacteria in the genus Streptomyces are also known to be important contributors to soil health, as well as producing a number of useful antibiotics. The genetic diversity of large (> 30) groups of other actinobacteriophages, i.e. phages infecting a few close relatives of the Streptomycetes, has been explored, but this is the first formal effort for Streptomyces-infecting phages.
Described here are a group of 45 phages, isolated from soil using a single Streptomycete host, Streptomyces griseus ATCC 10137. All 45 phages are tailed phages with double-stranded DNA. Siphoviruses predominate, six of the phages are podoviruses, and no myoviruses were observed. Notably present are seven phages with prolate icosahedral capsids. Genome lengths and genome termini vary considerably, and the distributions of each are in line with findings among other groups of studied actinobacteriophages. Interestingly, the average G+C among the 45 phages is around 11% lower than that of the isolation host, a larger disparity than reported for other groups of actinobacteriophages. Eighteen of the phages carry between 17 and 45 tRNAs and 12 of those carry a single tmRNA.
Forty-three phages were grouped into seven clusters and two subclusters based on dot plot analysis, average nucleotide identities, and gene content similarities. Two phages were not clustered with other phages in this dataset. A total of 5250 predicted genes were sorted into 1300 gene "phamilies," with about 8% of the total phamilies having only a single member. Analysis of gene content among the 45 phages indicates first that most clusters presented here appear to be relatively isolated from one another, with phages in any one cluster generally sharing < 10% of their genes with phages in other clusters described here. Secondly, most of the phages here are more than twice as likely to share genes with phages isolated on bacteria outside of the genus Streptomyces than they are other phages isolated using a Streptomycete as host. These observations suggest that (1) the phage clusters here have a distinct extended host range, (2) those host ranges share overlap, and (3) Streptomyces griseus is likely not the preferred natural host for all phages described.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc1404571 |
Date | 12 1900 |
Creators | Hale, Richard |
Contributors | Hughes, Lee E., Allen, Michael S., Azad, Rajeev K., Benjamin, Robert C., Root, Douglas D. |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | viii, 144 pages, Text |
Rights | Public, Hale, Richard, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved. |
Page generated in 0.0022 seconds