Return to search

The role of incubation temperature in determining avian phenotype: implications for avian ecology, life history evolution, and conservation

The early developmental environment has a profound influence on an individual's life history trajectory and parents have tremendous influence over this environment. Despite the wealth of research demonstrating that incubation temperature affects a suite of traits important to fitness in reptiles, we are only now discovering that nest temperatures are a defining component of the avian developmental environment. Aspects of the nest environment may be an important and overlooked maternal effect in birds as nearly all birds physically incubate their eggs, thus providing a clear link between parental behavior and the developmental environment of the avian embryo. My research used an interdisciplinary approach, uniting concepts from life history theory, bioenergetics. immunology, and physiological ecology to investigate the importance of incubation temperature to avian phenotype. I found that incubation temperature affects a suite of traits important for future development, survival and reproduction in a species of birds. Using a population of wood ducks (Aix sponsa) that has been the subject of long term studies I investigated the effects of incubation temperature on embryonic developmental patterns and energy expenditure, and body size and condition, stress endocrinology, thermoregulatory performance, and immunocompetence in hatchling wood ducks. In all experiments freshly laid wood duck eggs were collected from nest boxes located in SC, transported to Virginia Tech and incubated at one of three temperatures (35.0, 35.9, 37.0Ë C) that fell within the range of naturally-incubated wood duck nest temperatures. I found that less than 1Ë C differences in incubation temperature affected duckling growth and body condition, stress endocrinology, immune responses, and energy expended to thermoregulate. Many of these effects persisted days to weeks after hatching. In most cases, ducklings that hatched from eggs incubated at lowest temperature performed poorer than ducklings that hatched from eggs incubated at the higher temperatures. Incubation temperature also affected wood duck embryonic developmental trajectories and energy expended during incubation with embryos from the low incubation temperature expended more energy and developing slower than ducklings incubated at the higher temperatures. Embryonic energy expenditure could contribute to effects observed on hatchling phenotype. Because I demonstrate that incubation temperature affects hatchling phenotypic quality, the variability upon which natural selection acts, my findings have implications for avian ecology, life history evolution and conservation. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/28494
Date16 August 2011
CreatorsDuRant, Sarah E.
ContributorsFisheries and Wildlife Sciences, Hopkins, William A., Hawley, Dana M., Hepp, Gary R., Moore, Ignacio T., Walters, Jeffrey R.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationDuRant_SE_D_2011.pdf

Page generated in 0.0407 seconds