Dopamine (DA) is a catecholamine that is involved in several neural functions such as modulation of locomotor behaviors, arousal states to appetitive aversive learning and memory. The relationships between DA, stress response and aging are unclear. This thesis examines numerous physiological, behavioral and biochemical parameters following perturbations in DA synthesis and transport in the Drosophila melanogaster model system. Intriguingly, elevated DA pools appear to confer protection, while depleted DA levels or transport increase susceptibility to oxidative insult. Resistance to oxidative stress in mutants with elevated DA levels was attributed to a significant up-regulation of glutathione S-transferase Omega-1. A sexually dimorphic response in aging and senescence characteristics was also recorded among the mutants tested, but no discernable role of DA in these characteristics was observed. Taken together, these results point to a key role played by DA in stress response, which might have implications to age-related neurodegenerative diseases.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-3179 |
Date | 14 August 2015 |
Creators | Hanna, Marley Elyse |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0019 seconds