Return to search

Characterization of Spontaneous Motor Recovery and Changes in Plasticity-Limiting Perineuronal Nets Following Cortical and Subcortical Stroke

Stroke is a leading cause of neurological disability, often resulting in long-term motor impairments due to damage to the striatum and/or motor cortex. While both humans and animals show spontaneous recovery following stroke, little is known about how the injury location affects recovery and what causes recovery to plateau. This information is essential in order to improve current rehabilitation practice and develop new therapies to enhance recovery. In this thesis, we used endothelin-1 (ET-1), a potent vasoconstrictor, to produce focal infarcts in the forelimb motor cortex (FMC), the dorsolateral striatum (DLS) or both the FMC and DLS in male Sprague-Dawley rats. In the first experiment, the spontaneous recovery profile of animals was followed over an 8-week period using multiple behavioural tasks assessing motor function and limb preference to identify how recovery varies depending on injury location. Infarct volumes were measured to determine the association between injury and behavioural outcome. All three groups had significant functional impairments on the Montoya staircase, beam traversal, and cylinder tests following stroke, with the combined group having the largest and most persistent impairments. Importantly, spontaneous recovery was not simply dependent on lesion volume but on the lesion location and the behavioural test employed. In the second experiment, we focused on a potential cellular mechanism thought to underlie post-stroke plasticity and functional recovery. In a separate cohort of animals, we assessed how plasticity-limiting perineuronal nets (PNNs) and associated parvalbumin-positive (PV) GABAergic interneurons change following similar ET-1 strokes as in the prior experiment. A significant reduction in the density of PNNs was observed in the perilesional cortex of animals that received a cortical-only or combined stroke but not a striatal-only injury. Although there were no significant differences in the density of PV interneurons between sham and stroked groups, a significant negative correlation existed between cortical infarct volume and the density of PV interneurons in the perilesional cortex. Taken together these results demonstrate that lesion location influences motor recovery and neuroplastic changes following stroke. This supports the idea that a “one size fits all” approach for stroke rehabilitation may not be effective and treatment needs to be individualized to the patient.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/36812
Date January 2017
CreatorsKarthikeyan, Sai Sudarshan
ContributorsCorbett, Dale
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0028 seconds