In this work, a new organic light-emitting device (OLED) structure is proposed that allows light-emission from a metal-free device region, thus reducing the hurdles towards an electrically pumped organic solid state laser (OSL). Our design concept employs a stepwise change from a highly conductive but opaque metal part to a highly transparent but less conductive intrinsic emission layer. Here, the high current densities are localized to an area of a few micrometer in square, which is in the range of the mode volume of the transverse mode of an organic vertical-cavity surface-emitting laser (VCSEL). Besides these experimental results, we present findings from simulations which further support the feasibility of our design concept. Using an equivalent circuit approach, representing the current ow in the device, we calculate the time-dependent length of the emission zone and give estimations for appropriate material parameters.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:34847 |
Date | 08 August 2019 |
Creators | Slowik, Irma, Fischer, Axel, Gutsche, Stefan, Brückner, Robert, Fröb, Hartmut, Lenk, Simone, Reineke, Sebastian, Leo, Karl |
Publisher | SPIE |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 10.1117/12.2228233 |
Page generated in 0.0022 seconds