Return to search

Strengthening Slender S-Section Steel Columns Using CFRP Plates of Various Moduli

This thesis investigates strengthening slender steel columns with carbon fibre reinforced polymer (CFRP) plates of various moduli. Three different types of CFRP were used in the study: Ultra-high modulus (430GPa), High modulus (212GPa) and Normal modulus (168GPa). In this study, specimens were grouped according to measured initial out-of-straightness values. The first section examines the effect of adding CFRP plates to the column flanges when buckling about the weak axis. Twelve columns, with a slenderness ratio of 197, were tested, of which nine were strengthened with CFRP. The main parameters tested were the level of initial out-of-straightness (length (L)/8387 to L/1020), CFRP modulus (168 to 430 GPa), CFRP reinforcement ratio (13% to 34%) and the length of CFRP plate (33% to 95% of L). The gain in axial strength due to CFRP retrofitting ranged from 11% to 29%, depending on the various parameters. The gain generally increased as CFRP modulus, initial out-of-straightness, or CFRP reinforcement ratio increased. Global buckling consistently governed the maximum load. In the case of the 430 GPa CFRP, buckling was followed by CFRP crushing in compression, then rupture in tension.
The second section of the thesis examines the effect of CFRP plates added to the flanges and tested for buckling in the strong axis. Eight columns, with a slenderness ratio of 83, were tested of which five were strengthened with CFRP. The main parameters examined were the level of initial out-of-straightness (L/28889 to L/1635), CFRP modulus (168 to 430 GPa), CFRP reinforcement ratio (13% to 34%) and the axis of bending. The gain in axial strength due to CFRP retrofitting ranged from 0% to 25%, depending on the various parameters. The gain generally increased as initial out-of-straightness, or CFRP reinforcement ratio increased. The higher modulus did not perform as expected, showing no gain in strength, because the compressive strains were too large and the CFRP crushed before the specimen experienced any gain. Specimens compared with the weak axis, strengthened with normal modulus CFRP, had similar percentage gains in strength. / Thesis (Master, Civil Engineering) -- Queen's University, 2014-06-27 15:19:03.397

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/12258
Date02 July 2014
CreatorsRitchie, ALLISON
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0022 seconds